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We present a direct numerical solution of a particular inertial oscillation, the so-called 
' spin-over' mode, in spherical geometry. This mode is particularly relevant to the fluid 
flow within a precessing oblate spheroid. We demonstrate that the oscillatory Ekman 
layer breaks down at k30" latitude, and that this breakdown spawns internal shear 
layers. We show that the structure of these shear layers is different for a full sphere and 
a spherical shell, as noted in the preceding paper (Kerswell 1995). Despite the existence 
of these shear layers, however, the numerical decay rates agree to within 1 % with the 
asymptotic decay rates, which neglect any possible shear layers. Finally, we consider 
the nonlinear mean flow profiles driven by this mode, and demonstrate that our 
numerical results agree reasonably well with experimental results. 

1. Introduction 
It is well known that rotating fluid systems will support inertial oscillations. In 

particular, the steady precession of a rotating fluid-filled oblate spheroid maintains at 
a constant amplitude one particular inertial oscillation, the so-called spin-over mode, 
consisting of a rotation about an axis other than the rotation axis of the container 
(Poincare 1910). In this work we consider this spin-over mode in spherical geometry, 
in order to most easily identify the associated viscous flows generated. In the study of 
rotating precessing flows, a spherical container presents a particular difficulty, because 
the precessional motion of the container can only be transmitted to the fluid by viscous 
forces, which are assumed to be small. For this reason, instead of the precessionally 
forced spin-over mode, we consider the unforced spin-over mode. As noted by 
Greenspan (1968, p. 67), 'Precession may be viewed as a sequence of infinitesimal 
changes [in the axis of rotation] and it is anticipated that this mode will play a key role 
in that problem'. 

To demonstrate the similarity between the precessionally forced mode and the 
unforced mode, we begin by considering the equation of motion in a rotating and 
precessing reference frame, 

(1.1) 
a 
at 
- v + + ( v . ~ ) v + 2 ( L + s ~ ) x u  = - ~ p + E ~ 2 v + ( L x D ) x r ,  

where L+sZ is the total rotation rate, consisting of the basic rotation plus the 
precession 51 of that basic rotation. The effect of the precession is thus to introduce the 
so-called Poincare force (f x a) x r (Malkus 1968). 
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In a spheroid of oblateness 7, an exact solution to this equation of motion (1.1) is 

v, = essin($+t), us = -e(l +v)zsin($+t), vc = -e(l +r)zcos($+t), (1.2) 

in which the fluid’s rotation axis is merely displaced slightly from the container’s 
rotation axis. The amplitude E is given in terms of the oblateness 7 and the precession 
rate 0. The structure and stability of this solution have been discussed in considerably 
more detail by Kerswell (1993). 

The point we wish to focus on in this work is that this spin-over mode does not, of 
course, satisfy the no-slip boundary conditions, and so there will be viscous Ekman 
boundary layers. Roberts & Stewartson (1963) have demonstrated that these oscillatory 
Ekman layers break down at a certain critical latitude. The effect of this breakdown on 
the interior flow has thus long been an issue of some concern. Quoting Greenspan 
(1968, p. 62) once again: ‘The likely effect of the critical zones might be to establish 
weak internal shear layers along the characteristic direction’. The preceding paper 
(Kerswell 1995, hereafter referred to as I) has presented arguments to support this 
view. In this paper, we provide direct numerical evidence to confirm that internal shear 
layers are indeed present, and that their structure appears consistent with the scalings 
discussed in I. 

For numerical reasons, it is easier to work in spherical, rather than spheroidal, 
geometry. However, as noted above, spherical geometry presents a particular difficulty, 
because the precessional motion of the container can only be transmitted to the fluid 
by the small viscous forces. For this reason, instead of the precessionally forced 
momentum equation (1. l), we consider the unforced momentum equation 

Poincare’s (1 9 10) inertial spin-over mode 

(1.3) 
a 
a t  
- u + ( u . V ) U + ~ ~ X U =  -Vp+EV2u.  

We expand the velocity field in the Rossby number e, which is typically small, 

u = suo+e2u,$ ..., (1.4) 

computing numerically the linear term u, and then using this to calculate the 
axisymmetric part of the nonlinear term u,. 

This equation of motion (1.3) will also support an inertial spin-over mode. 
Experimentally, this mode would be generated by impulsively tipping the rotation axis 
of the spherical container. The resulting disturbance would then be the slowly decaying 
spin-over mode we consider here. In the reference frame rotating with the spherical 
container, an inviscid spin-over mode, that is a solid-body rotation about an axis 
different from the rotation axis of the container, would be represented by (Greenspan 
1968) 

or, alternatively, in spherical coordinates, 

v, = essin($+t), us = -ezsin($+t), vc = -ezcos($+t), (1.5) 

v, = 0, ug = -ersin($+t), vc = -ercos8cos($+t). (1.6) 
It is this similarity between the precessionally forced spheroidal spin-over mode (1 -2) 
and the unforced spherical spin-over mode (1.5) that motivates this work. The internal 
shear layers one then obtains in spherical geometry are likely to be very similar to the 
shear layers one would obtain in spheroidal geometry. The biggest difference is 
probably that we are no longer maintaining the flow at any definite amplitude E .  

Indeed, it must be noted that our results are valid only in the weakly nonlinear regime, 



Oscillatory internal shear layers in precessing flows 329 

whereas the experiments are typically done in the more strongly nonlinear regime. This 
difference is probably as important as the slight geometrical differences. 

In this paper we present a direct numerical solution of the viscous spin-over mode 
in spherical geometry, for Ekman numbers as small as E = explicitly resolving all 
boundary and internal layers that may develop. From (1.3) and (1.4), the equation 
governing the linear spin-over mode is 

(1.7) 

where we are interested in the particular time-dependence a/a t  = i(l +A).  That is, we 
are interested in this one particular free inertial oscillation having a frequency of 
essentially 1. The complex eigenvalue h is then the (small) viscous correction to the 
inviscid spin-over frequency of 1, and is to be determined as part of the solution. In $2 
we present a direct numerical solution of the resulting linear eigenvalue problem, both 
in a full sphere and in a spherical shell. 

We demonstrate that the oscillatory Ekman layer does indeed break down, at a 
latitude of 30” for this particular frequency, and that this breakdown does spawn 
internal shear layers, as suggested by Greenspan (1968). Furthermore, as discussed in 
I, we show that the structure of these shear layers is indeed different for the full sphere 
and the spherical shell. In the full sphere there is only one characteristic direction that 
the shear layers can propagate along, whereas in the spherical shell there are three: one 
tangential to the inner Ekman layer eruption, and one non-tangential to each of the 
inner and outer Ekman layer eruptions, as in figure 1 of I. The Ekman layers are known 
to break down over an O(E’/5) range. The non-tangential shear layers will thus see a 
generating region of width O(E1l5), whereas the tangential shear layer will see a 
generating region of width O(E2’5). As demonstrated by Walton (1975), the ‘natural’ 
width of such shear layers is O(IP3) .  Thus, the non-tangential shear layers see a 
generating region thicker than their ‘natural’ width, whereas the tangential shear layer 
sees a generating region thinner than its ‘natural’ width. The result is that the full 
sphere shear layer adjusts to the O(E1/5)  scaling, whereas the spherical shell shear layer 
remains at the O(ZP3) scaling, as noted in I. While we are not able to reach sufficiently 
small Ekman numbers to precisely confirm these scalings, we are able to demonstrate 
that the scalings are different, and not inconsistent with the asymptotic scalings noted 
above. Section 3 presents the linear eigenmodes in the sphere and the spherical shell, 
demonstrating the differences in the structures of the shear layers. 

Finally, we consider the nonlinear mean flow profiles driven by the self-interaction 
of the linear spin-over mode. From (1.3) and (1.4), the solutions u, of (1.7) will induce 
the nonlinear response 

a -u, + 24 x U, = - V p  + EV’u,, 
at 

a 
-u, + 2L x 1 1 ~  = - V p  + EV2u, - ( u , * V )  u,. 
at 

In $4 we present a direct numerical solution of the axisymmetric portion of (1.8), again 
both in the full sphere and in the spherical shell. Section 5 presents the nonlinear 
responses, and compares them with the experiments of Malkus (1968) and Vanyo et al. 
(1995). 

2. Numerical solution of the linear problem 
As in Hollerbach (1994a), we begin by decomposing: 

u, = V x ( e P ) + V x V x ( f P ) ,  
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thereby satisfying the incompressibility condition V 'u ,  = 0. We then expand e and f as 

e(r, 6,$)  = C e,(r) I':: (cos e) exp [i# + i( 1 + h) t] ,  (2.2a) 
'Vl 

n=l 

Nl 

n=l 
f i r ,  6,$) = C f n ( r )  P:: (cos 0) exp [i$ + i( 1 + h) t], (2.2b) 

where P:) (cos 6) are associated Legendre functions, with n, = 2n - 1 and n2 = 2n. 
Note that we have thereby chosen a particular symmetry about the equator. This 
symmetry, as well as the azimuthal dependence exp(i$), is chosen to agree with the 
inviscid mode (1.6). The viscous mode we are interested in will differ in many respects 
from the inviscid mode, but it will exhibit the same equatorial symmetry and azimuthal 
wavenumber. 

Having expanded as (2.2), the r-components of the curl and the curl of the curl of 
(1.7) yield 

f n  
N ,  
C [n,(n, + 1) i - 2i - En2(n2 + 1) Lnz] L, r? Pt: (cos 8) 

ar n=l  

d 
n=1 dr d6 

- "1 en sin B - P:: (cos 0) 

encosBP',1(cos6) 
n=l 

f n  
N, 

= - h C nz(n2 + 1) iL, Pg: (cos e), 
2r n=1 

where the operator 

(2.3 a) 

(2.3 b) 

By applying the appropriate recursion relations (Abramowitz & Stegun 1968), one can 
show that sin 6 (d/d6) PC) (cos 6) and cos 6 P t )  (cos 6) are both linear combinations 
only of Pgil (cos 0). Thus, explicitly separating out the angular dependence, (2.3 a) 
couples e, only to f n P l  and f,, and (2.3 b) couples f n  only to e, and en+,. 

Arranging these as in figure 1 results in the complex matrix eigenvalue problem 

Av = h0v, (2.5) 
where A is block tri-diagonal and B is block diagonal. Each block of course still 
contains the radial structure, discussed below. The banded structure of these matrices 
A and B will turn out to be crucial: in order to resolve the various boundary and 
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FIGURE 1. A schematic diagram of the banded matrix eigenvalue problem (2.5) that results when 

(2.3) are arranged as shown. Each block still contains the details of the radial expansion. 

internal layers for Ekman numbers as small as E = one needs a very high 
truncation. The dimension of A and 5 is then so large (2N1M1 = 20000) that one 
could not even store them, were they not banded. However, as they are banded, 
256 Mbytes of computer memory is more than sufficient for the entire calculation. 

Turning briefly now to the implementation of the radial structure, we expand en and 
f, in terms of Chebyshev polynomials, collocated at Ml collocation points, essentially 
as in Hollerbach (1994a), except that we now impose the no-slip boundary conditions 

d 
dr 

f ,  = - f ,  = en = 0. 

The implementation of the boundary conditions within each diagonal block of A is as 
in Hollerbach (1994b). The precise details of the radial expansion will not be presented 
here, as they are rather tedious, and immaterial to the further discussion. Also, there 
are a few subtle differences between the full sphere and the spherical shell expansions. 

To solve the eigenvalue problem (2.5), we use inverse iteration (Peters & Wilkinson 
1971) 

Fearn (1991) has provided a very nice one-dimensional example of the power of this 
method in solving for boundary-layered eigensolutions ; we provide a two-dimensional 
example here. We begin with one call to the NAG routine FOINAF to obtain the LU 
decomposition of A, followed by repeated calls to F04NAF to obtain successive 
iterates of (2.7). Successive iterates will then converge rather rapidly to the eigenvector 
having the smallest Ihl. It is known (Greenspan 1964) that Ihl scales asymptotically as 
O(E’’2), and so the iteration will indeed converge to the desired eigenvector. The 
iteration converges in the sense that successive iterates become (complex) multiples of 
one another, and the multiplicative factor is then precisely k1 : 

9 (2.8) u(m)  = A-1 U ( m - l )  

after a dozen or so iterations. Also, since most of the computational effort goes into 
the LU decomposition of A, once that is accomplished one might as well do enough 
iterations to obtain convergence to full machine precision. 

3. Linear results 
3.1. Full sphere 

We begin by considering the dependence of the eigenvalue h on the Ekman number E. 
Table 1 shows the quantity ih/Eli2 as a function of E, from 10-4.5 to 10-6.5. According 
to Greenspan’s boundary layer analysis, in the asymptotic limit this quantity should be 

ih/Eli2 = - 2.620 + 0.2591. 
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FIGURE 2. The structure of the full-sphere eigenmodes u,,. From top to bottom 
E = 10-5.5, Contour intervals of 0.01. 

E ih/E1I2 

10-4.5 - 2.706 + 0.396i 
10-5 -2.679 +0.311i 

- 2.662 + 0.353i 
10-6 -2.651 +0.330i 

- 2.644 + 0.3 12i 

1 0 - 5 . 5  

10-6.5 

TABLE 1. The dependence of the eigenvalue h on E for the full sphere. 
The asymptotic limit is ih/E'l2 = -2.620 +0.259i. 

The asymptotic decay factor is thus in excellent agreement with the numerical values 
obtained here. (Greenspan 1968, p. 66, also quotes an experimental decay factor of 
-2.82E1", as determined by Malkus.) The agreement in the asymptotic frequency 
correction is not quite so good. However, it should be noted in table 1 that the relative 
variation of the frequency corrections is considerably greater than the relative variation 
of the decay factors. Presumably the asymptotic limit of the frequency correction is 
only reached at even smaller Ekman numbers. Perhaps the internal shear layers, 
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E ih/ Ell2 

10-4 - 1.860+0.2391 
- 1.831 +0.242i 

10-5 - 1.813+0.231i 
- 1.799+0.2221 

1 o-6 - 1.793+0.212i 

10-4.5 

10-5.5 

TABLE 2. The dependence of the eigenvalue h on E for the spherical shell. 
The asymptotic limit is ih/E1/* = - 1.776+0.176i. 

neglected in Greenspan's analysis, have a relatively strong effect on the frequency 
correction. 

Turning now to the structure of the eigenmodes, figure 2 shows the solutions at 
E = lop5, 10-5.5, and The arbitrary amplitude has been normalized so that the 
total angular momentum of the solution is the same as that of a solid-body rotation 
of angular velocity unity, as in the inviscid mode (1.6). This solid-body rotation has 
then been subtracted out in figure 2, to focus exclusively on the viscous corrections to 
the inviscid mode. The particular meridional sections shown have been chosen to 
emphasize the structure of the shear layers: u, and uo are in phase, and u4 is 90" out of 
phase. One notes very clearly the breakdown of the Ekman layer at 30" latitude, and 
the internal shear layers, inclined at exactly 30" to the container's axis of rotation, 
spawned thereby. 

Verifying the asymptotic scalings derived in I is rather difficult, primarily because it 
is unclear how to define an objective quantifiable measure of the width of the shear 
layers. However, it is quite clear that the Ekman layer breaks down over a rather broad 
range in latitude, and that the shear layers are spawned over this entire range. Their 
precise width is certainly not inconsistent with an O(E115) scaling: this would imply that 
between E = and the shear layers should become thinner by a factor of 
loll5 = 1.6, which is essentially as observed. Furthermore, it is equally clear that the 
flow within the shear layers decreases with decreasing Ekman number. The precise 
magnitude is again not inconsistent with an O(E3/10) scaling. For example, the number 
of contour lines in the most clearly defined shear layer in uo is 12 for E = lop5, but only 
6 for E = lopg, in agreement with = 2. 

3.2. Spherical shell 
We again begin by considering the dependence of the eigenvalue h on E. Table 2 shows 
the quantity ih/E'" as a function of E, from to lop6, for a spherical shell of inner 
radius 1/2 and outer radius 3/2. Extending Greenspan's analysis to a spherical shell, in 
the asymptotic limit this quantity should now be 

where p = r i / r ,  is the radius ratio. For p = 1/3 this yields 

ih/E1'2 = - 1.776+0.176i. 

The asymptotic decay factor is thus again in excellent agreement with the numerical 
values obtained here. The agreement in the asymptotic frequency correction is again 
not quite so good, presumably for the same reason as before. 
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FIGURE 3. The structure of the spherical-shell eigenmodes uo. From top to bottom 
E = 10-4.5 1 1  10-5.5. Contour intervals of 0.02. 

Turning again to the structure of the eigenmodes, figure 3 shows the solutions at 
E = lop4 to 10-5.5. The amplitude has been normalized as before, and the particular 
meridional sections have again been chosen to emphasize the structure of the shear 
layers. One notes again the internal shear layers, inclined at 30" to the axis of rotation. 
It is worth remarking that, for this particular frequency, this reflection pattern exactly 
closes on itself for all p 6 1/2. 

Of the three possible characteristic directions discussed in the introduction, only the 
one with the shear layer tangential to the inner Ekman layer eruption, and possibly also 
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the one with the shear layer non-tangential to the outer Ekman layer eruption, seem 
to be excited. The shear layer non-tangential to the inner Ekman layer eruption does 
not seem to be excited at all. This is presumably the result of the smoothing 
accomplished by the tangential shear layer, which effectively hides the inner boundary 
layer eruption. 

Because the tangential shear layer is spawned by an O(EZi5), as opposed to an 
O(E1"), generating region, it is indeed considerably thinner. The spherical-shell shear 
layer at E = The 
precise scaling is again not inconsistent with the O(E1i3) scaling derived in I. Also, one 
notes that the flow within the shear layers again decreases with decreasing E. Finally, 
it has been noted by Walton (1975) that such shear layers decay algebraically rather 
than exponentially at their edges. As a result, the flow within the shear layer reflection 
pattern is still strongly influenced by them, and hence the contours align with the 
characteristic directions. 

is already thinner than the full-sphere shear layer at E = 

4. Numerical solution of the nonlinear problem 

axisymmetric nonlinear response 
As indicated in the introduction, the eigenmodes u, of (1.7) will induce the 

where F is the axisymmetric component of -(u,.V)u,,, and is known to have the 
particular time-dependence c?/c?t = - 2 4 ,  which will therefore also be the time- 
dependence of u,. As in Hollerbach (19946), we begin by decomposing: 

u, = ve"*+V x ($e"$j. (4.2) 

The $-components of (4.1) and its curl then yield 

where the operators 

2 - + ( 2 h t + E D 2 ) ~  w = -FqI, 
G?Z 

c?V 

22 
2--(2hi+ EDz)D2+ = -(V x F)$,  

(4.3a) 

(4.3 6) 

(4.4a) 

D Z  = V2-(r  sin 0jP2. (4.46) 

The solution of (4.3) is then a trivial modification of the solution presented in 
Hollerbach (19946), the only difference being the inclusion of the 2 4  terms. We again 
expand the angular structure of v and in terms of N ,  associated Legendre functions, 
and as before the two operators i)/c?z and Dz couple only adjacent modes. The radial 
structure is again collocated at M ,  Chebyshev collocation points (the details of the 
radial expansions are again slightly different for the full sphere and the spherical shell). 

Because F, being quadratic, has more structure than uo, one should take N2 and M ,  
to be greater than N ,  and M I ,  ideally twice greater. But since N ,  and M ,  were already 
taken to be so large as to push the limits of the available computer memory, one cannot 
quite do so. However, since the block tri-diagonal matrix to be inverted is now real 
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rather than complex, one can increase N ,  and M ,  somewhat. Whereas for N ,  and M ,  
we could only take N ,  = M ,  = 100, for N ,  and M ,  we can take N ,  = M ,  = 135. 

5. Nonlinear results 
5.1. Full sphere 

Figure 4 shows the structure of the nonlinear response at E = lop5, 10-5.5, and lop6. 
The top rows shows the azimuthal velocity u,  the middle row shows the streamfunction 
sic., and the bottom row shows the axially averaged velocity U = z;lSpudz as a 
function of cylindrical radius s. The most noteworthy feature of the nonlinear response 
is this set of nested, differentially rotating cylinders evident in ZI and U .  We believe these 
to be the cylindrical shear layers so evident in the experiments of Vanyo et al. (1995). 

Because (5.4) is essentially independent of time ( 2 4  being small according to table 
l), its characteristics are now cylinders instead of cones. Thus, even though the linear 
eigenmodes exhibit inclined oscillatory shear layers, the nonlinear responses exhibit 
axially aligned steady shear layers, which appear as cylinders parallel to the axis of 
rotation. Not surprisingly, the amplitude of these shear layers within the 2 scaling 
increases with decreasing Ekman number, as it becomes increasingly easy to excite 
these geostrophic modes. Perhaps more surprisingly, the number of these shear layers 
also seems to increase with decreasing Ekman number. We unfortunately cannot 
achieve sufficiently small Ekman numbers to determine whether this increase in the 
number of oscillations in u persists indefinitely. 

The most pronounced mean flow shear layers seem to occur at s+O and at 
s = cos30° = 0.86. The strong shear layer at s z 0.86 is presumably caused by the 
sudden absence of the inclined oscillatory shear layers for s > 0.86, as noted in I. A 
similar shear layer in the mean flow was derived analytically by Busse (1968) to explain 
the original observations of Malkus (1968). Busse’s asymptotic analysis considered the 
breakdown of the oscillatory Ekman layer at 30°, and the one mean flow shear layer 
it induces. We here consider not only the breakdown of the Ekman layer, but also the 
inclined oscillatory shear layers spawned thereby, and so we obtain more than one 
mean flow shear layer. 

The rather strong shear layers at the axis s+O are presumably caused by a 
geometrical focusing effect, whereby the inclined shear layers become concentrated in 
an increasingly small volume as they approach the axis. If, instead of the velocity U, we 
had plotted the angular velocity o = U / S ,  which is presumably what is visualized in the 
experiments, these shear layers at the axis would have dominated the entire picture. 
There is some evidence for strong axial shear layers in the experiments of both Malkus 
(1968) and Vanyo er al. (1995). (Greenspan 1968, p. 175, also reproduces a photograph 
by Malkus.) Unfortunately, it is rather difficult to obtain quantitative information 
from the experiments about the relative strength of these various shear layers, 
preventing any precise comparison. One should also bear in mind that the experiments 
considered the precessionally forced mode in a spheroid, whereas we have considered 
the unforced mode in a sphere. Also, as noted in the introduction, the experiments are 
in the more strongly nonlinear regime, whereas we are only in the weakly nonlinear 
regime. Thus, there may well be subtle differences in the quantitative details. In any 
case, the presence of these axial shears is certainly a potential source of the instability 
observed in the experiments at sufficiently large precession rates. 
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i n - 5 5  r n - 6  

3 1  1 

FIGURE 4. The structure of the nonlinear response u1 in the full sphere. From top to bottom the 
azimuthal velocity u, the streamfunction s$, and the axially averaged velocity V .  

5.2. Spherical shell 
Figure 5 shows the structure of the nonlinear response in the spherical shell, at 
E = One notes clearly the signature of the strong oscillatory 
shear layer tangential to the inner boundary layer eruption. The axially averaged 
velocity U displays all the features of the spherical case, albeit with less oscillations in 
the sign of the flow. Significantly, as in the spherical case, the number of these reversals 
in sign increases as the Ekman number decreases, and the last reversal in sign occurs 
precisely at the outer boundary eruption. This latter feature is not reproduced at the 
inner boundary eruption as the tangential shear layer spawned here propagates in both 
directions away from the eruption. 

10-4.5, and 

6. Conclusion 
In this work we have considered a particular inertial oscillation of interest in rotating 

and precessing flows. We have demonstrated through a direct numerical solution that 
the Ekman layer associated with this spin-over mode does indeed change scalings at a 
certain critical latitude of 30" for this particular mode, as noted previously by Roberts 
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FIGURE 5. The structure of the nonlinear response u1 in the spherical shell. From top to bottom 
the azimuthal velocity u, the streamfunction s$, and the axially averaged velocity D. 

& Stewartson (1963). We have found that this local thickening of the boundary layer 
at the critical latitude gives rise to internal shear layers, which owing to their oscillatory 
nature propagate along characteristic directions inclined to the rotation axis. As a 
result, they penetrate throughout the interior of the fluid. Depending upon whether or 
not they are tangential to the boundary layer at the critical latitude, they see generating 
regions of different thicknesses, and this determines their scalings in the interior of the 
fluid. The existence of these shear layers, however, does not appear to affect the 
standard asymptotic result (Greenspan 1964) for the complex viscous frequency shift; 
we obtained agreement to within 1 %. This confirms the general scaling arguments of 
Stewartson & Roberts (1963) that at lowest order the boundary layer eruptions are 
not important for the viscous frequency shifts. 

We have also demonstrated that these oscillatory shear layers appear to have 
important consequences for the induced mean flow profile. In addition to the one mean 
flow shear layer at s = 0.86 previously obtained by Busse (1968), we also obtain others 
for s < 0.86, which appears to be in better agreement with the experimental results. 

Finally, it should be emphasized that this numerical method is in no way restricted 
to this particular inertial oscillation. By choosing a different inviscid frequency, or a 
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different equatorial symmetry, or azimuthal wavenumber in (2.2), one can obtain other 
inertial oscillations. For example, axisymmetric inertial oscillations have been 
considered, both in a full sphere (Aldridge & Toomre 1969), as well as in a spherical 
shell (Aldridge 1972). By suitably modifying this code, it should be possible to 
investigate the shear layers associated with such modes as well. 
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